Continuum Electromechanics
Fall 2008
Peak pattern with a magnetic field of about 330 Gauss perpendicular to an oil-based ferrofluid layer. The peaks initiate in an hexagonal array when the magnetic surface force exceeds the stabilizing effects of fluid weight and surface tension. (Image by Prof. Markus Zahn.)
Lecture Notes
Some of the images in the lecture notes are courtesy of MIT Press and Krieger Publishing. These images are used with permission.
Images courtesy of MIT Press are from the textbook:
Images courtesy of Krieger Publishing are from the textbook:
Zahn, Markus.
Electromagnetic Field Theory: A Problem Solving Approach. Malabar, FL: Krieger Publishing, Co., 2003. ISBN: 9781575242354.
WEEK # | TOPICS |
1 | Lecture 1: review of Maxwell's equations (PDF - 1.7 MB) |
2 | Lecture 2: flux-potential relations for Laplacian fields (PDF) Lecture 3: air-gap magnetic machines and electrostatic machines (PDF) |
3 | Lecture 4: solenoidal fields and vector potential transfer relations (PDF) |
4 | Lecture 5: laws, approximations, and relations of fluid mechanics (PDF - 2.1 MB) Lecture 6: stress tensors (PDF) |
5 | Lecture 6 (cont.): electromechanical dynamics (PDF) |
6 | Lecture 7: pressure-velocity relations for inviscid, incompressible fluids (PDF) |
7 | Lecture 8: electrohydrodynamic and ferrohydrodynamic instabilities (PDF - 1.7 MB) Kelvin-Helmholtz instability (PDF) |
8 | Lecture 9: plasma stability (z-θ pinch) (PDF) |
9 | Lecture 10: stability of a perfectly conducting spherical drop (Rayleigh's limit) (PDF) |
10 | Lecture 10 (cont.): stability of a perfectly conducting spherical drop (Rayleigh's limit) |
11 | Lecture 10 (cont.): stability of a perfectly conducting spherical drop (Rayleigh's limit) |
12 | Lecture 11: smoothly inhomogeneous systems (PDF) |
No comments:
Post a Comment